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Modelling and simulation of �res in vehicle tunnels
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SUMMARY

Applying a low-Mach asymptotic for the compressible Navier–Stokes equations, we derive a new �uid
dynamics model, which should be capable to model large temperature di�erences in combination with
the low-Mach number limit. The model is used to simulate �res in vehicle tunnels, where the stan-
dard Boussinesq-approximation for the incompressible Navier–Stokes seems to be inappropriate due to
the high temperatures developing in the tunnel. The model is implemented using a modi�ed �nite-
di�erence approach for the incompressible Navier–Stokes equations and tested in some realistic �re
events. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Severe �re accidents in European vehicle tunnels during the past years have arised the ques-
tion on how to improve the safety regulations and evacuation plans in existing or presently
projected vehicle tunnels. To get a better knowledge on heat and smoke propagation and the
corresponding emergency strategies it is necessary to perform real �re experiments in existing
tunnels, which are complicated and costly tasks and even forbidden in some European coun-
tries. Besides real experiments the numerical modelling using computer simulations becomes
more and more necessary and even tractable.
Up to now computer simulations in engineering sciences are nearly exclusively based on

the so-called zonal models. In a zonal model the tunnel is divided into certain number of
zones and each zone is characterized by some numerical quantities describing the (averaged)
temperature, the mass fraction when considering chemical models as well as some other typical
�ow characteristics. Then each zone is coupled with its neighbours based on some heuristic
balance equations, see References [1, 2].
A more fundamental approach is to use a �eld model, i.e. to use equations from compu-

tational �uid dynamics, like the well-known compressible Navier–Stokes equations, and to
perform simulations based on these partial di�erential equations. In order to use a model
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from computational �uid dynamics one should decide whether the �ow under consideration is
compressible or incompressible, viscous or inviscid, laminar or turbulent and whether energy
transport plays a signi�cant role. First of all, the typical velocities in a vehicle tunnel are of
the order of 1 m s−1, which means that we are close to the low-Mach number limit, where
the �uid becomes incompressible. On the other hand it is clear that during a �re event the
energy transport is crucial to model the heat propagation correctly.
Incompressible viscous �uids are usually described by the incompressible Navier–Stokes

equations, which are extended to energy transport using the so-called Boussinesq-approxi-
mation [3, 4]. Nevertheless, this model seems to be inappropriate to describe �re events,
because the validity of the Boussinesq-approximation is restricted to small temperature di�er-
ences. To describe large temperature variations one should use the compressible Navier–Stokes
equations, but it is known that this model is inappropriate when considering the low-Mach
number limit.
In the present paper we will study a new �uid dynamics model, which is capable to

combine the low-Mach number limit with large temperature deviations occurring in the �ow.
The model is derived using a low-Mach number asymptotic for the compressible Navier–
Stokes equations, where the �re in the tunnel is modelled by heat sources in the energy
equation of the Navier–Stokes system.

2. THE NAVIER–STOKES SYSTEM WITH SOURCE TERMS

The starting point for the description of the �ow propagation in the tunnel during a �re event
are the compressible Navier–Stokes equations [5]. Additionally, the �re is modelled by a heat
source in the energy equation, which represents a heat release rate inside a given volume,
where the �re takes place. This method leads to a rather correct energy distribution inside the
tunnel volume.
Hence, the two-dimensional compressible Navier–Stokes equations with source terms are

written as

(�̃)t̃ + div(�̃ũ) = 0

ũt̃ + (ũ · ∇)ũ+ 1
�̃

∇p̃= �
�̃
�ũ+ f̃

(cv�̃T̃ )t̃ + div(cvũ�̃T̃ ) + p̃ div(ũ) = ��T̃ + q̃

(1)

where �̃(x; t), ũ(x; t)= (ũ; ṽ)T, p̃(x; t), T̃ (x; t) denote the density, the velocity, the pressure
and the temperature of the �uid, respectively (see also Reference [6]).
The quantities �, �, cp and cv describe the dynamic viscosity, the heat conductivity and

the speci�c heat coe�cients under constant pressure and constant volume, respectively.
The term f̃ =(f̃x; f̃y)

T models the external forces, e.g. the gravitational force.
The source term q̃ consists of three contributions, i.e.

q̃= q̃w + q̃h + q̃s

where q̃w is the heat conduction through the wall, q̃h is the heat source and q̃s is the sink
source.
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In many instances a compressible �uid can be regarded as a perfect gas, even if viscous
e�ects are taken into account and the equation of state is written as

p̃= �̃RT̃

where R= cp − cv is the gas constant.
System (1) is non-dimensionalized using the following scales:

x :=
x̃
h
; y :=

ỹ
h
; t :=

u∞ t̃
h

u :=
ũ
u∞
; p :=

p̃
p∞

; � :=
�̃
�∞
; T :=

T̃
T∞
; p∞=�∞RT∞

(2)

where h is the height of the tunnel. Typical values for the reference quantities in the case of
long tunnels are (see also Reference [6])

u∞=1 m s−1; p∞=105 kg m−1 s−1; �∞=1:2 kg m−3; T∞=300 K

Reformulating system (1) in the new variables (2) leads to

(�)t + div(�u) = 0

ut + (u · ∇)u+ 1
�M 2

1
�

∇p=
(
1
Re

)
1
�
�u+ f

(�T )t + div(u�T ) + (�− 1)p div(u) =
(
�
Pr

1
Re

)
�T + q

(3)

where the adiabatic exponent �, the Mach number M , the Reynold’s number Re, the Prandl
number Pr and the Froude number Fr are given by

�=
cp
cv
; M 2 =

�∞u2∞
�p∞

; Re=
�∞u∞h
�

; Pr=
�cp
�
; Fr :=

u∞√
h‖̃f‖

with f =
f̃

Fr2||f̃ || ; q=
q∞h
u∞p∞

(�− 1)q̃

The values corresponding to these parameters can be found in Reference [6]. It turns out that
the Mach number M is of the order of 10−5 and therefore we use an asymptotic expansion
for the pressure in the low-Mach number regime given by

p=p0 + �p1 +O(�2) (4)

where �= �M 2. Inserting formula (4) into system (3), the momentum equation yields in
leading order

∇p0 = 0 ⇒ p0 =p0(t)

But, assuming that the ground pressure in a open domain is also constant in time, we can
conclude that p0 is constant in time. Using the leading order approximation T =p0=� from
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the third equation of system (3), we obtain

div(u)=
q
�p0

(5)

Finally, system (3) is transformed into

(�)t + div(�u) = 0 (6)

ut + (u · ∇)u+ 1
�

∇p1 =
(
1
Re

)
1
�
�u+ f (7)

div(u) =Q (8)

where Q is the right-hand side of Equation (5). One should notice that this are not the
incompressible Navier–Stokes equations with variable density [7, 8, 3] because the velocity is
not divergence-free.
System (6)–(8) is considered as an initial–boundary value problem on a bounded, rectan-

gular domain � with boundary @� given by

@�=�1 ∩�2 ∩�3 ∩�4

Here, �1 and �3 denote the entrance and exit of the tunnel, �2 and �4 the lower and upper
�xed wall, respectively.
The initial conditions are given by

�(x; 0)=�0(x); u(x; 0)= u0(x); p1(x; 0)=p10(x) (∀x ∈ �) (9)

The boundary conditions for the velocity are

@u
@x
(x; t) = 0; x∈�1 ∪�3
u(x; t) = 0; x∈�2 ∪�4

(10)

For the density, we use standard in�ow conditions

�(x; t) = �0 if u(x; t)¿0; x∈�1
�(x; t) = �1 if u(x; t)¡0; x∈�3

(11)

A very sensitive task is to impose boundary conditions for the pressure. In order to do this
we transform our system (6)–(8) applying the divergence operator to Equation (7) (assuming
enough di�erentiability), which yields a non-linear Poisson equation for the pressure

div
(
1
�

∇p1
)
=div

(
1
Re
1
�
�u+ f

)
−Qu · ∇u − ∇(u · ∇u) · u −Qt (12)
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The boundary conditions are

p1(x; t) =p(x) on �1 ∪�3 (13)

∇p1 · ñ=
(
1
Re
1
�
�u+ f

)
· ñ on �2 ∪�4 (14)

where ñ is the exterior unit normal vector.

Remark

(i) Using Dirichlet boundary conditions for pressure at the entrance and exit of the tunnel,
we can directly simulate atmospheric e�ects or a pressure pro�le induced by ventilators.
It is known that a ventilator produces an overpressure which induces a certain velocity
to the �uid.

(ii) The Neumann boundary conditions for the pressure at the top and the bottom of the
domain are derived by taking the normal component of Equation (7) at the boundary
and using the prescribed boundary conditions for the velocity �eld.

In the next section, we will solve numerically the following system obtained from Equations
(6)–(8):

(�)t + div(�u) = 0 (15)

ut + (u · ∇)u+ 1
�

∇p1 =
(
1
Re

)
1
�
�u+ f (16)

div
(
1
�

∇p1
)
= div

(
1
Re
1
�
�u+ f

)
−Qu · ∇u − ∇(u · ∇u) · u −Qt (17)

together with the initial conditions (9) and the boundary conditions (10), (11), (13) and (14).

3. THE NUMERICAL SCHEME

The numerical solution of system (15)–(17) is realized using an algorithm based on the
Marker and Cell (MAC) method [9]. This method consists of a simple �nite di�erence
scheme with an explicit �rst-order time discretization. The domain is discretized using a
staggered grid, in which the unknowns are not located at the same grid points. The discrete
values for the velocities, the pressure and the density are located on three separate grids, each
shifted by half a grid spacing to the bottom, to the left, and to the lower left, respectively
(see Figure 1).
The �nite di�erence notations used here are: pnij is the pressure at the centre of cell (i; j)

at time level n; �nij the density at the centre of cell (i; j) at time level n; u
n
ij the velocity in

x direction at the middle of right side of cell (i; j) at time level n and vnij the velocity in y
direction at the middle of top side of cell (i; j) at time level n.
Subscripts are used for the cell location and superscripts for the time level at which the

quantities are evaluated such that t= n�t, where �t is the time step.
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Figure 1. The staggered grid.
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Figure 2. The cell displacement.

Using this grid we can see that not all the values are lying at the boundary of the domain,
e.g. the values of v. Therefore, the domain is surrounded by a single layer of the so-called
ghost cells, see Figure 2.

3.1. Time discretization

The time derivatives appearing in system (15)–(17) are discretized using a �rst-order forward
Euler method. First, the density �n+1 is found from Equation (15). Then, to �nd un+1 and
pn+1 from (16) and (17) we use an adapted projection method.
This means that in the �rst step an auxiliary velocity �eld uaux is computed from the

following equation:

uaux − un
�t

+ [(u · ∇)u]n = 1
Re
[�u]n

�n+1
+ fn

@uaux

@n
=w on @�

(18)

The quantity w is computed such that div(u)=Q on @� (see Section 3.3).
In the second step, the velocity un+1 is found from:

un+1 = uaux − �t
�n+1

∇pn+1 (19)

∇un+1 =Q (20)

In order to �nd pn+1 we derive the discrete version of Equation (17). This can be obtained
by taking the divergence of Equation (19) and using Equation (20).
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Now, we will write in more details the method explained above. First we rewrite the
convective terms in Equation (16) using the continuity Equation (8)

un+1 = un +�t

(
1
Re

1
�n+1

[(
@2u
@x2

+
@2u
@y2

)]n
−
[
@(u2)
@x

]n
−
[
@(uv)
@y

]n

+ [uQ + fx]n −
[
1
�
@p
@x

]n+1)
(21)

vn+1 = vn +�t

(
1
Re

1
�n+1

[(
@2v
@x2

+
@2v
@y2

)]n
−
[
@(uv)
@x

]n
−
[
@(v2)
@y

]n

+ [vQ + fy]n −
[
1
�
@p
@y

]n+1)
(22)

Using Equation (18) we can write

uaux := un +�t
(
1
Re

1
�n+1

[(
@2u
@x2

+
@2u
@y2

)]n
−
[
@(u2)
@x

]n
−
[
@(uv)
@y

]n

+ [uQ + fx]n
)

vaux := vn +�t
(
1
Re

1
�n+1

[(
@2v
@x2

+
@2v
@y2

)]n
−
[
@(uv)
@x

]n
−
[
@(v2)
@y

]n

+ [vQ + fy]n
)

to obtain

un+1 = uaux −�t 1
�n+1

@pn+1

@x
(23)

vn+1 = vaux −�t 1
�n+1

@pn+1

@y
(24)

Using again Equation (20), we get from Equations (23) and (24)

Q=
@un+1

@x
+
@vn+1

@y
=
@uaux

@x
+
@vaux

@y
−�t

[
1
�n+1

(
@2pn+1

@x2
+
@2pn+1

@y2

)

− 1
(�n+1)2

(
@�n+1

@x
@pn+1

@x
+
@�n+1

@y
@pn+1

@y

)]

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:277–296



284 I. GASSER, J. STRUCKMEIER AND I. TELEAGA

which, after rearranging, becomes a non-linear Poisson equation for the pressure pn+1 at
time tn+1

@2pn+1

@x2
+
@2pn+1

@y2
− 1
�n+1

(
@�n+1

@x
@pn+1

@x
+
@�n+1

@y
@pn+1

@y

)

=
�n+1

�t

[
@uaux

@x
+
@vaux

@y

]
− Q�n+1

�t
(25)

Finally, un+1 is updated using Equation (19).

3.2. Spatial discretization

Now, we have to discretize all spatial derivatives appearing in the semi-discrete equations
derived in the previous section. For the spatial discretization of the density Equation (15) we
use a standard upwind method

�n+1ij = �nij − u+ij
�t
�x
(�nij − �ni−1j)− u−

ij
�t
�x
(�ni+1j − �nij)

−v+ij
�t
�y

(�nij − �nij−1)− v−ij
�t
�y

(�nij+1 − �nij)−�t�nijQnij (26)

where

u+ = max(u; 0)= 1
2(u+ |u|); u−= min(u; 0)= 1

2(u − |u|):
The spatial discretization of Equations (23) and (24) is

un+1ij = uauxij − �t
�x

1
�n+1ij

(pn+1i+1j − pn+1ij )

i=1; : : : ; imax − 1; j=1; : : : ; jmax (27)

vn+1ij = vauxij − �t
�y

1
�n+1ij

(pn+1ij+1 − pn+1ij )

i=1; : : : ; imax; j=1; : : : ; jmax − 1 (28)

The Laplace operator appearing in the equations of uaux are discretized using the standard
5-point stencil. Some di�culties appear when we discretize the convective terms @(u2)=@x,
@(uv)=@y, @(uv)=@x, and @(v2)=@y. Because the convective terms become dominant at high
Reynold’s numbers, it is necessary to use a mixture of the central di�erences and the donor-
cell discretization (see References [10, 11]).
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As an example, we give here the discretization of the convective term @(u2)=@x evaluated
at the mid-point of the right edge of cell (i; j); i=1; : : : ; imax − 1, j=1; : : : ; jmax

[
@(u2)
@x

]
i; j
:=

1
�x

((
ui; j + ui+1; j

2

)2
−
(
ui−1; j + ui; j

2

)2)

+�
1
�x

( |ui; j + ui+1; j|(ui; j − ui+1; j)
4

− |ui−1; j + ui; j|(ui−1; j − ui; j)
4

)

where the parameter � is chosen between [0; 1], �=0 corresponds to central di�erences, while
�=1 yields the donor-cell scheme.
The discrete Poisson equation for pressure is

pn+1i+1j − 2pn+1ij + pn+1i−1j
(�x)2

+
pn+1ij+1 − 2pn+1ij + pn+1ij−1

(�y)2

− 1
�n+1ij

[
�n+1i+1j − �n+1i−1j

2�x
pn+1i+1j − pn+1i−1j

2�x
+
�n+1ij+1 − �n+1ij−1

2�y
pn+1ij+1 − pn+1ij−1

2�y

]

=
�n+1ij

�t

[uauxij − uauxi−1j
�x

+
vauxij − vauxij−1

�y

]
− Qij�n+1ij

�t

i=1; : : : ; imax; j=1; : : : ; jmax (29)

3.3. Boundary conditions

The discrete boundary conditions for the velocities read as

u0; j = u1; j ; uimax ; j= uimax−1; j

v0; j = v1; j ; vimax+1; j= vimax ; j

}
for j=1; : : : ; jmax

ui;0 =−ui;1; ui; jmax+1 =−ui; jmax
vi;0 = 0; vi; jmax = 0

}
for i=1; : : : ; imax

Additionally, we need the following values of uaux, vaux at the boundary in order to compute
the right-hand side of Equation (29)

uaux0; j ; u
aux
imax ; j for j=1; : : : ; jmax

vauxi;0 ; v
aux
i; jmax for i=1; : : : ; imax

which have been not yet speci�ed.
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To determine these boundary values we take a look at Equations (27) and (28) evaluated
at the boundaries. It turns out that we need the values of u−1; j, uimax+1; j, vi;−1, vi; jmax+1 and to
compute these values we use the discrete boundary conditions and the discretized continuity
Equation (8) in the cells (0; j), (imax; i), (i; 0), (i; jmax).
Imposing the Dirichlet and Neumann boundary conditions for the pressure we get

p0; j =2pin − p1; j ;
pimax+1; j =2pout − pimax; j ; j=1; : : : ; jmax

pi;0 =pi;1 − �y
�t

�i;0vauxi;0 ;

pi; jmax+1 =pi; jmax +
�y
�t
�i; jmaxv

aux
i; jmax ; i=1; : : : ; imax

where pin, pout represent the hydrostatic pressures with respect to the height of the domain.

3.4. Stability condition

In order to ensure stability of the numerical scheme we have to impose stability conditions
on the time step �t. Usually, these conditions are of the form

2�t
Re
¡
(

1
(�x)2

+
1

(�y)2

)−1
; |umax|�t¡�x; |vmax|�t¡�y (30)

where |umax|, |vmax| are the maximal absolute values of the velocities. Based on these stability
conditions an adaptive time step is computed in Reference [11], such that �t for the next
time step satis�es all conditions (30):

�t ¡ �min

(
Re
2

(
1

(�x)2
+

1
(�y)2

)−1
;
�x

|umax| ;
�y

|vmax|

)
(31)

The factor � ∈]0; 1] is a so-called safety factor. To solve the Poisson equation for pressure
(29) we apply a standard BiCGSTAB-method.

4. NUMERICAL EXAMPLES

In the following we give numerical results for two realistic �re events in a vehicle tunnel.
In both cases the heat source has a strength of 1 MW. The heat source is placed exactly
in the middle of the tunnel and it is distributed over a rectangular area of size 10 m× 4 m.
One should notice that the heat source is implemented as an indicator function and not as an
obstacle. In the �rst example the tunnel pro�le has no slope, in the second one we consider
a constant slope of 3%.
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Table I. Data for a tunnel without slope.

Length 1 km
Height 10 m
Slope 0%
Heat source 1 MW
Pressure di�erence (bottom–top) 120 Pa
Simulation time 30 min

Figure 3. Development of the temperature �eld (in ◦C) for a tunnel without slope up to time t=1min.
The horizontal axis represents the tunnel section between 350 and 650 m.

4.1. Tunnel without slope

The tunnel con�guration and other relevant data are listed in Table I. As initial conditions
we use

u0(x)= v0(x)=0; �0(x)=1:2; P(y)=�gy

where the value for the pressure is just the hydrostatic pressure. Figure 3 shows from top to
bottom the time propagation of the temperature �eld at the discrete times t=10; 25; 35; 45 s
and 60s for the tunnel section between 350 and 650m. The corresponding results for the mean
velocity are given in Figure 4. Because there is no pressure di�erence between the entrance
and the exit of the tunnel (see also Figure 5) the fronts of the temperature (as well as the
velocity) propagate symmetrically with respect to the middle of the tunnel.
Continuing the simulation from t=1 min, we observe that the temperature and velocity

front remain symmetric up to the end of the simulation at t=30 min. Figures 6–8 show the
temperature, the mean velocity and the pressure �elds, respectively, at t=90; 105; 155 s and
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Figure 4. Development of the mean velocity �eld (in m s−1) for a tunnel without slope up to time
t=1 min. The horizontal axis represents the tunnel section between 350 and 650 m.

Figure 5. Development of the pressure �eld (in Pa) for a tunnel without slope up to time t=1 min.
The horizontal axis represents the whole tunnel length of 1000 m.
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Figure 6. Development of the temperature �eld (in ◦C) for a tunnel without slope between t=1
and 30 min. The horizontal axis represents the whole tunnel length of 1000 m.

Figure 7. Development of the mean velocity �eld (in m s−1) for a tunnel without slope between t=1
and 30 min. The horizontal axis represents the whole tunnel length of 1000 m.
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Figure 8. Development of the pressure �eld (in Pa) for a tunnel without slope between t=1 and
30 min. The horizontal axis represents the whole tunnel length of 1000 m.

Table II. Data for a tunnel with slope.

Length 1 km
Height 10 m
Slope 3%
Heat source 1 MW
Pressure di�erence (bottom–top) 120 Pa
Simulation time 30 min

t=17; 30min, again from top to bottom. The horizontal axis in the �gures now represents the
whole tunnel length of 1km. The pressure nicely stabilizes to the given values. The results even
show that there are no boundary instabilities caused by improper boundary conditions, which
proves that the boundary conditions used are suitable conditions for our model equations.

4.2. Tunnel with slope

The tunnel con�guration and other relevant data are listed in Table II. Now the tunnel pro�le
has a slope of 3% and we use the same initial conditions like in the previous example.
Figures 9–14 correspond to the description of the �rst example given by Figures 3–8.
As in the previous example, the largest speed of propagation of the fronts occurs at the

beginning of the simulations in the neighbourhood of the heat source, see Figure 10. Here,
because the tunnel pro�le has a slope of 3%, we do not observe a symmetric propagation of
the fronts. Due to the pressure di�erence the front moves more fast to the right than to the
left, see Figures 9, 10, 12 and 13. Due to the Reynold’s number of Re=2500 some vortex
structures appear in the temperature and velocity �eld.
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Figure 9. Development of the temperature �eld (in ◦C) for a tunnel with slope up to time t=1 min.
The horizontal axis belongs to the tunnel section between 350 and 650 m.

Figure 10. Development of the mean velocity �eld (in m s−1) for a tunnel with slope up to time
t=1 min. The horizontal axis belongs to the tunnel section between 350 and 650 m.
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Figure 11. Development of the pressure �eld (in Pa) for a tunnel with slope up to time t=1min. The
horizontal axis belongs the whole tunnel length of 1000 m.

Figure 12. Development of the temperature �eld (in ◦C) for a tunnel with slope between t=1 and
30 min. The horizontal axis represents the whole tunnel length of 1000 m.
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Figure 13. Development of the mean velocity �eld (in ms−1) for a tunnel with slope between t=1 and
30 min. The horizontal axis represents the whole tunnel length of 1000 m.

Figure 14. Development of the pressure �eld (in Pa) for a tunnel with slope between t=1 and
30 min. The horizontal axis represents the whole tunnel length of 1000 m.
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Figure 15. Vertical temperature pro�les (in ◦C) for a tunnel without slope 100 m left and right from
the heat source at various times.

Finally, Figures 15 and 16 show instantaneous temperature pro�les at various times along
a vertical axis, which is placed 100 m to the left and right of the middle of the tunnel for
example I and II, respectively. Figure 15 shows, that even the vertical temperature pro�les
remain nearly symmetric with respect to the middle of the tunnel during the whole simulation.
Figure 16 clearly indicates that the tunnel slope leads to a signi�cant �ow velocity in the
direction of the tunnel exit, which restricts an increasing temperature at the lower part of the
tunnel.

5. CONCLUSION

In the present paper, we studied a new �uid dynamics model which is used to model low-Mach
number �ows in combination with large energy transport. The model was applied to simu-
late �re events in vehicle tunnels, where standard models from computational �uid dynamics
seem to fail. The system is discretized using a modi�cation of a standard projection method
based on �nite-di�erences and numerical results were given for two realistic �re events. The
model should be seen as a physically motivated alternative to compressible �ow models on
one hand and incompressible equations on the other hand. Both types of models are known to
run into di�culties when modelling low-Mach number �ows in combination with strong heat
transfer.
Concerning �re events in vehicle tunnels we concentrate on the most important e�ects

occurring in the �ow. The model has to be generalized to the case of large tunnel slopes,
ventilation systems in the tunnel, to the case of air supply systems, etc. Moreover, one may
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Figure 16. Vertical temperature pro�les (in ◦C) for a tunnel with slope 100 m left and right from the
heat source at various times.

take into account radiative heat transfer. A further generalization concerns the modelling of
turbulence. Some work in these directions is presently under investigation.
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